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Introduction Model Theoretical Results Design Experimental Results Conclusion

Motivation

Many important choices are dynamic:
• when to enter the job market or to retire,
• when to stop searching for a job, a house, or a spouse,
• when to sell an asset.

As a consequence, skewness preferences might play an important role:
• a preference for right-skewed (lottery-like) risks,
• and an aversion toward left-skewed (large-loss, small-probability) risks.

These can be explained by models of non-linear probability weighting:
• Cumulative Prospect Theory (Kahneman and Tversky 1992; CPT).
• Salience Theory (Bordalo, Gennaioli, and Shleifer 2012; ST).

Broad Research Question: What is the role of skewness in dynamic choices
under risk?
Welfare implications: holding an asset for too long, neglect studying, . . .
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→ The strategy yields a right-skewed distribution (or “loss-exit” strategy).
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Overview of the paper

When to stop an arithmetic Brownian motion (ABM) w/ a non-positive drift?

BMs: never-gambling (EUT) & never-stopping (CPT; Ebert and Strack, 2015).

1) Theory: What does ST predict?
• ST predicts gambling if the drift is not too negative & that more people

gamble with a less negative drift.
• ST predicts that subjects will choose loss-exit strategies.
• ST predicts consistent skewness prefences in static and dynamic choices.

2) Experiment: How do people actually stop in the lab?
• Most subjects gamble, the longer so the less negative is the drift. The share

of subjects that immediately stop strictly decreases in the drift.
• Conditional on gambling, most people choose mostly loss-exit strategies.
• People reveal consistent skewness preferences in static and dynamic choices.

Summary: ST makes precise predictions and describes actual behavior quite well.
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Related literature

Literature on the modeling of/testing for skewness preferences:
Theory: Kahneman and Tversky (1979, 1992), Menezes et al. (1980), Bordalo et al. (2012)

Experiments: Ebert (2015), Dertwinkel-Kalt and Köster (2020)

→ We propose a dynamic version of salience theory of choice under risk.
→ Skewness preferences revealed in static and dynamic problems are consistent.

Theoretical and experimental literature on behavioral stopping:
Theory: Machina (1989), Karni and Safra (1990), Barberis (2012), Xu and Zhou (2013), Ebert
and Strack (2015, 2018), Duraj (2019)

Experiments: Imas (2016), Imas et al. (2017), Fischbacher et al. (2017), Strack and Viefers
(2019), Heimer et al. (2020)

→ Derive and test the non-parametric salience predictions on stopping behavior.

4/15



The Model



Introduction Model Theoretical Results Design Experimental Results Conclusion

Salience theory of choice under risk (Bordalo et al., 2012)

Choice between random variables X and Y with joint CDF F . Choose X iff∫ (
x− y

)
· σ(x, y) dF (x, y) > 0,

where the salience function σ is symmetric, bounded, and satisfies:

Contrast effect: differences attract a decision maker’s attention.

Local Thinking and Skewness Preferences
Markus Dertwinkel-Kalt,a Mats Kösterb
a University of Cologne, Germany; b Heinrich Heine University Düsseldorf, Germany

Research Questions and Contribution

1. Do continuous models of local thinking (Bordalo et al., 2012; Kőszegi and Szeidl, 2013) provide a well-defined theory of choice under risk?
Yes: in particular, the certainty equivalent to a (discrete) lottery is well-defined, and monotonic in probabilities and outcomes.

2. Can models of local thinking account for skewness-dependent risk-attitudes?
As unlikely, but outstanding payoffs attract attention, an agent exhibits a preference for right-skewed and an aversion toward left-skewed risks.

3. Do models of local thinking provide a better explanation for skewness preferences than alternative approaches?
Unrealistic predictions on the magnitude of skewness preferences that emerge for cumulative prospect theory (CPT; Tversky and Kahneman, 1992) can be resolved.

1 Fundamentals of the Salience Model (Bordalo et al., 2012; henceforth: BGS).

x yx 0 y 0

�(x 0, y 0)> �(x , y)

Figure 1: Differences attract a decision maker’s attention: contrast effect.

y x + ✏x y + ✏0

�(x , y)> �(x + ✏, y + ✏)

Figure 2: A given contrast appears less salient for higher outcome levels: level effect.

2Right-Skewed Lottery. The contrast in upside payoff and expected
value exceeds the contrast in downside payoff and expected value.

x

Pr(x)

0.5

1

x1 = �1 x2 = 9E = 0

E � x1 < x2� E

Figure 3: Probability mass function of Lx = (�1,0.9; 9,0.1) with E = 0 and V = 9.

3Left-Skewed Lottery. The contrast in downside payoff and expected
value exceeds the contrast in upside payoff and expected value.

y

Pr(y)

0.5

1

y1 = �9 y2 = 1E = 0

E � y1 > y2� E

Figure 4: Probability mass function of Ly = (�9, 0.1; 1,0.9) with E = 0 and V = 9.

Risk-Attitudes are Skewness-Dependent

Observation 1. Many people buy insurance against typi-
cally left-skewed risks (e.g., Sydnor, 2010).

Observation 2. Many people participate in right-skewed
lottery games, gamble in casinos, or bet at the horse-track
(e.g., Golec and Tamarkin,1998).

Observation 3. Assets with right-skewed expected returns
are often overpriced (e.g, Conrad et al., 2013).

Observation 4. Workers tend to accept a lower expected
wage if the distribution of wages in a given cluster (i.e.,
education-occupation combination) is right-skewed (e.g.,
Berkhout et al., 2010).

! Few individuals are globally risk-averse or risk-
seeking. Instead risk-attitudes often vary with the context.

Salience and Skewness (Boxes 1, 2 and 3)

• In line with BGS, we assume a linear value function.
• Consider a binary lottery L = L(E, V, S) with expected

value E, variance V , skewness S, and outcomes x1 < x2.
• Suppose choice set {L, E}. Then, the lottery’s upside is

more salient if and only if �(x2, E)> �(x1, E).
• A salient thinker overweights the more salient outcome.
Proposition. For any E and V , there exists some threshold
Ŝ = Ŝ(E, V ) such that the salient thinker strictly prefers
lottery L to its expected value E if and only if S > Ŝ.
• Salience predicts a preference for right- and an aversion

toward left-skewed risks (i.e., skewness preferences).
• Skewness preferences are driven by the contrast effect.

In this line, also the model of focusing by Kőszegi and
Szeidl (2013) predicts skewness preferences.

Testable Predictions

Prediction 1. Consider choice set {L, E}.
a) If a subject chooses E over L(E, V, S0), she chooses E
over L(E, V, S) for any S < S0.
b) If a subject chooses L(E, V, S00) over E, she chooses
L(E, V, S) over E for any S > S00.
! This prediction has not been tested yet.
For all commonly used salience specifications:
Prediction 2. Consider choice set {L, E}.

a) If a subject chooses E0 over L(E0, V, S) and x1 � 0,
she chooses E over L(E, V, S) for any E < E0.
b) If a subject chooses L(E00, V, S) over E00 and x1 � 0,
she chooses L(E, V, S) over E for any E > E00.
! Supported by Mormann and Frydman (2016).

Skewness Preferences under CPT vs. Salience

Probability Weighting under CPT vs. Salience.
• Probability weights according to CPT are independent

of the corresponding outcomes.
• Salience-distorted probability weights depend on the

values assigned to the corresponding outcomes, and
therefore vary with the curvature of the value function.

Puzzle 1: Skewness Preferences in the Small.
• A naive CPT-agent gambles until bankruptcy as she al-

ways finds an unfair, but attractive binary lottery (Ebert
and Strack, 2015).
! It depends on the curvature of her value function
whether a naive salient thinker gambles until bankruptcy.

Puzzle 2: Skewness Preferences in the Large.
• Azevedo and Gottlieb (2012) show that a firm can earn

an arbitrarily large expected profit by selling a binary
lottery L with a finite expected value E to a CPT-agent.
! A salient thinker’s valuation for any binary lottery with
a finite expected value is bounded.

Conclusion

• Local thinking offers a psychologically sound explana-
tion for skewness preferences (i.e., the contrast effect),

• and makes more plausible predictions on their magni-
tude than alternative approaches such as CPT.
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Research Questions and Contribution

1. Do continuous models of local thinking (Bordalo et al., 2012; Kőszegi and Szeidl, 2013) provide a well-defined theory of choice under risk?
Yes: in particular, the certainty equivalent to a (discrete) lottery is well-defined, and monotonic in probabilities and outcomes.

2. Can models of local thinking account for skewness-dependent risk-attitudes?
As unlikely, but outstanding payoffs attract attention, an agent exhibits a preference for right-skewed and an aversion toward left-skewed risks.

3. Do models of local thinking provide a better explanation for skewness preferences than alternative approaches?
Unrealistic predictions on the magnitude of skewness preferences that emerge for cumulative prospect theory (CPT; Tversky and Kahneman, 1992) can be resolved.

1 Fundamentals of the Salience Model (Bordalo et al., 2012; henceforth: BGS).
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Figure 1: Differences attract a decision maker’s attention: contrast effect.
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Figure 2: A given contrast appears less salient for higher outcome levels: level effect.
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value exceeds the contrast in downside payoff and expected value.
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value exceeds the contrast in upside payoff and expected value.
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Figure 4: Probability mass function of Ly = (�9,0.1; 1,0.9) with E = 0 and V = 9.

Risk-Attitudes are Skewness-Dependent

Observation 1. Many people buy insurance against typi-
cally left-skewed risks (e.g., Sydnor, 2010).

Observation 2. Many people participate in right-skewed
lottery games, gamble in casinos, or bet at the horse-track
(e.g., Golec and Tamarkin,1998).

Observation 3. Assets with right-skewed expected returns
are often overpriced (e.g, Conrad et al., 2013).

Observation 4. Workers tend to accept a lower expected
wage if the distribution of wages in a given cluster (i.e.,
education-occupation combination) is right-skewed (e.g.,
Berkhout et al., 2010).

! Few individuals are globally risk-averse or risk-
seeking. Instead risk-attitudes often vary with the context.

Salience and Skewness (Boxes 1, 2 and 3)

• In line with BGS, we assume a linear value function.
• Consider a binary lottery L = L(E, V, S) with expected

value E, variance V , skewness S, and outcomes x1 < x2.
• Suppose choice set {L, E}. Then, the lottery’s upside is

more salient if and only if �(x2, E)> �(x1, E).
• A salient thinker overweights the more salient outcome.
Proposition. For any E and V , there exists some threshold
Ŝ = Ŝ(E, V ) such that the salient thinker strictly prefers
lottery L to its expected value E if and only if S > Ŝ.
• Salience predicts a preference for right- and an aversion

toward left-skewed risks (i.e., skewness preferences).
• Skewness preferences are driven by the contrast effect.

In this line, also the model of focusing by Kőszegi and
Szeidl (2013) predicts skewness preferences.

Testable Predictions

Prediction 1. Consider choice set {L, E}.
a) If a subject chooses E over L(E, V, S0), she chooses E
over L(E, V, S) for any S < S0.
b) If a subject chooses L(E, V, S00) over E, she chooses
L(E, V, S) over E for any S > S00.
! This prediction has not been tested yet.
For all commonly used salience specifications:
Prediction 2. Consider choice set {L, E}.

a) If a subject chooses E0 over L(E0, V, S) and x1 � 0,
she chooses E over L(E, V, S) for any E < E0.
b) If a subject chooses L(E00, V, S) over E00 and x1 � 0,
she chooses L(E, V, S) over E for any E > E00.
! Supported by Mormann and Frydman (2016).

Skewness Preferences under CPT vs. Salience

Probability Weighting under CPT vs. Salience.
• Probability weights according to CPT are independent

of the corresponding outcomes.
• Salience-distorted probability weights depend on the

values assigned to the corresponding outcomes, and
therefore vary with the curvature of the value function.

Puzzle 1: Skewness Preferences in the Small.
• A naive CPT-agent gambles until bankruptcy as she al-

ways finds an unfair, but attractive binary lottery (Ebert
and Strack, 2015).
! It depends on the curvature of her value function
whether a naive salient thinker gambles until bankruptcy.

Puzzle 2: Skewness Preferences in the Large.
• Azevedo and Gottlieb (2012) show that a firm can earn

an arbitrarily large expected profit by selling a binary
lottery L with a finite expected value E to a CPT-agent.
! A salient thinker’s valuation for any binary lottery with
a finite expected value is bounded.

Conclusion

• Local thinking offers a psychologically sound explana-
tion for skewness preferences (i.e., the contrast effect),

• and makes more plausible predictions on their magni-
tude than alternative approaches such as CPT.
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Ŝ = Ŝ(E, V ) such that the salient thinker strictly prefers
lottery L to its expected value E if and only if S > Ŝ.
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! A salient thinker’s valuation for any binary lottery with
a finite expected value is bounded.

Conclusion

• Local thinking offers a psychologically sound explana-
tion for skewness preferences (i.e., the contrast effect),

• and makes more plausible predictions on their magni-
tude than alternative approaches such as CPT.
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Stochastic process, stopping strategies, and solution concept

As in Ebert and Strack (2015), the asset’s price evolves according to an ABM

dXt = µdt+ νdWt with X0 = x and Xt ≥ 0, (1)

where (Wt)t≥0 is a BM, µ ∈ R gives the drift, and ν ∈ R+ the volatility. The
process is non-negative and absorbing in zero, and has a finite expiration date
T <∞.

Subjects can choose two-threshold stopping strategies

Solution concept: a naive decision rule à la Ebert and Strack (2015)
“At every point in time the naive [salient thinker] looks for some strategy that
brings her higher [salience-weighted utility] than stopping immediately. If such a
strategy exists, [he] holds on to the investment — irrespective of [his] earlier
plan.”
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An illustrative example

Denote the current wealth level y, and consider gambling with thresholds a and b.
Zero drift: salient thinker gambles if and only if σ(a, y) < σ(b, y).

x

Pr(x)

0.5

0.9

a = 60 y = 100 b = 140

σ(a, y) > σ(b, y)

Proposition 1
A salient thinker plays a process with zero drift.
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An illustrative example

Denote the current wealth level y, and consider gambling with thresholds a and b.
Zero drift: salient thinker gambles if and only if σ(a, y) < σ(b, y).

x

Pr(x)

0.5

0.9

a = 70 y = 100 b = 140

σ(a, y) ≷ σ(b, y)

Proposition 1
A salient thinker plays a process with zero drift.
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An illustrative example

Denote the current wealth level y, and consider gambling with thresholds a and b.
Zero drift: salient thinker gambles if and only if σ(a, y) < σ(b, y).

x

Pr(x)

0.5

0.9

a = 80 y = 100 b = 140

σ(a, y) ≶ σ(b, y)

Proposition 1
A salient thinker plays a process with zero drift.
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An illustrative example

Denote the current wealth level y, and consider gambling with thresholds a and b.
Zero drift: salient thinker gambles if and only if σ(a, y) < σ(b, y).

x

Pr(x)

0.5

0.9

a = 90 y = 100 b = 140

σ(a, y) < σ(b, y)

Proposition 1
A salient thinker plays a process with zero drift.
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Overview of the salience predictions on stopping behavior

Prediction 1

The share of “immediate sellers” monotonically decreases in the drift.

→ Distinguishes ST from EUT (w/ concave utility), which predicts no gambling,
and from CPT, which yields never stopping irrespective of the drift.

Prediction 2

Conditional on not selling the asset, subjects choose a loss-exit strategy.

Prediction 3

Consistent skewness preferences across static and dynamic choices. Details
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Implementation

• n = 158 in 5 sessions in Cologne in Jan 2020.
• 10 ECU = 1 Euro.
• T = 10 sec and subjects could always pause the process.
• 6 processes with 0, -1, -3, -5, -10, -20 as drifts per sec.
• Order of drifts randomized at the subject level.
• Verbal explanation of the stochastic process. Details

• Subsequent test for static skewness preferences (12 questions).

Pre-registered at AEA Registry: https://doi.org/10.1257/rct.5359-1.0.
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Before making a selling decision, subjects could sample from the underlying process
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Result 1
Subjects stop earlier for processes with a more negative drift. In particular, the
share of subjects selling immediately monotonically decreases in the drift. Details
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Result 2
Conditional on not selling the asset immediately, a majority of subjects initially
chooses a loss-exit strategy. The median subject chooses 73% loss-exit strategies.
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Result 3
Consistent static and dynamic skewness preferences (ρ = 0.39, p-value < 0.001).
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Adjustments of the initial strategies

• Only 1% of the subjects did never adjust the initial strategy.

• The median subject adjusts her strategy once per round, on average.

• Across all drifts, around 85% of all processes are stopped later than planned.

• Subjects mostly switch from a loss-exit to another loss-exit strategy:

To

Loss-Exit Gain-Exit

From
Loss-Exit 63.31% 10.31%

Gain-Exit 12.01% 14.37%

• We also find disposition-effect-like behavior consistent with ST. Details
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Key take-aways

1 Endogenous skewness matters, but stopping behavior is sensitive to the drift.

2 Further applications: job search, striving for an elusive goal, . . .

3 People reveal consistent skewness preferences in static and dynamic choices.

4 ST is a promising candidate for unified theory of static and dynamic choice.
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In discrete, finite time CPT predicts stopping close to the expiration date

Let the process be given by a fair coin that is tossed repeatedly T times.

Whenever the coin comes up heads (tails) the value goes up (down) by 10 cents.

Consider Tversky and Kahneman’s (1992) representative CPT agent:

v(x) =
{

(x− r)α if x ≥ r,
−λ(−(x− r))α if x < r,

and w(p) = pδ

(pδ + (1− p)δ)1/δ

with α = 0.88, λ = 2.25, and δ = 0.65. When does this agent stop?

Consider the stopping time τa,b with a = Xt − 0.1 and b = Xt + (T − t)0.1:

(Xt + 0.1, 1/2)

(Xt − 0.1, 1/2)

t = T − 1

(Xt + 0.2, 1/4)

(Xt , 1/4)
(Xt − 0.1, 1/2)

t = T − 2

. . .
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In discrete, finite time CPT predicts stopping close to the expiration date – cont’d

Result: the representative CPT agent might stop eventually, but away from the
reference point already a few coin tosses suffice for her to gamble. Precisely:

1 coin toss remaining: stop if and only if XT−1 ∈ {r, r+ 0.1, . . . , r+ (T − 1)0.1}.

2 coin tosses remaining: stop if and only if XT−2 ∈ {r, r + 0.1, r + 0.2, r + 0.3}.

3 coin tosses remaining: stop if and only if XT−3 ∈ {r, r + 0.1}.

4 coin tosses remaining: stop if and only if XT−4 = r.
Back



Verbal explanation of the stochastic process

“In this experiment you will see assets of varying profitability. How profitable an
asset is in the long run is described by the drift of the asset. The drift denotes
the average change in the value of the process per second.”

and

“A positive drift implies that the asset will increase in value in the long run,
while a negative drift implies that the asset will decrease in value in the long run.
Notice that the value of the asset varies. Hence, even an asset with a negative
drift sometimes increases in value.”

and

“Independent of the drift, the value of the asset can, in principle, become
arbitrarily large. The probability that the asset’s value indeed becomes very large
is the smaller the more negative the drift is. But even an asset with a very
negative drift can attain a very large value.”
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Relation between skewness preferences revealed in static and dynamic environments

Lottery Exp. Value Skewness
( 37.5, 80%; 0, 20%) 30 -1.5
(41.25, 64%; 10, 36%) 30 -0.6
( 45, 50%; 15, 50%) 30 0
( 60, 20%; 22.5, 80%) 30 1.5
( 75, 10%; 25, 90%) 30 2.7
( 135, 2%; 27.85, 98%) 30 6.9

Table: Test for static skewness preferences (from Dertwinkel-Kalt and Köster, 2020).
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