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As a consequence, skewness preferences might play an important role:

® a preference for right-skewed (lottery-like) risks,

® and an aversion toward left-skewed (large-loss, small-probability) risks.
These can be explained by models of non-linear probability weighting:

e Cumulative Prospect Theory (Kahneman and Tversky 1992; CPT).

® Salience Theory (Bordalo, Gennaioli, and Shleifer 2012; ST).

Broad Research Question: What is the role of skewness in dynamic choices
under risk?

Welfare implications: neglect studying, holding an asset for too long, ...
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No commitment and endogenous skewness can result in excessive gambling
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— The strategy yields a right-skewed distribution (or “loss-exit" strategy).
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— Does the agent actually exit? Or does she come up with a new strategy? , .
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BMs: never-gambling (EUT) & never-stopping (CPT; Ebert and Strack, 2015).

1) Theory: What does ST predict?
® ST predicts gambling if the drift is not too negative & that more people
gamble with a less negative drift.
® ST predicts that subjects will choose loss-exit strategies.

® ST predicts consistent skewness prefences in static and dynamic choices.

2) Experiment: How do people actually stop in the lab?

® Most subjects gamble, the longer so the less negative is the drift. The share
of subjects that immediately stop strictly decreases in the drift.

® Conditional on gambling, most people choose mostly loss-exit strategies.
® People reveal consistent skewness preferences in static and dynamic choices.

Summary: ST makes precise predictions and describes actual behavior quite well.
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— Derive and test the non-parametric salience predictions on stopping behavior.

4/15



The Model



Salience theory of choice under risk (Bordalo et al., 2012)

Choice between random variables X and Y with joint CDF F. Choose X iff

[ @) o) aF @) >0,

where the salience function o is symmetric, bounded, and satisfies:
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Choice between random variables X and Y with joint CDF F. Choose X iff
/ (x—y) -olx,y) dF(z,y) >0,

where the salience function ¢ is symmetric, bounded, and satisfies:

Contrast effect: differences attract a decision maker’s attention.

o(x,y")>olx,y)

Level effect: a given contrast is less salient at a higher outcome level.

olx,y)>o(x+ey+e)

N N
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Stochastic process, stopping strategies, and solution concept

As in Ebert and Strack (2015), the asset’s price evolves according to an ABM
dX; = pdt + vdW, with Xg =2 and X; >0, (1)
where (W});>¢ is a BM, 1 € R gives the drift, and v € Ry the volatility. The

process is non-negative and absorbing in zero, and has a finite expiration date
T < 0.
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As in Ebert and Strack (2015), the asset’s price evolves according to an ABM
dX; = pdt + vdW, with Xg ==z and X; >0, (1)

where (W});>¢ is a BM, 1 € R gives the drift, and v € Ry the volatility. The
process is non-negative and absorbing in zero, and has a finite expiration date
T < 0.

Subjects can choose two-threshold stopping strategies

Solution concept: a naive decision rule a la Ebert and Strack (2015)

“At every point in time the naive [salient thinker] looks for some strategy that
brings her higher [salience-weighted utility] than stopping immediately. If such a
strategy exists, [he] holds on to the investment — irrespective of [his] earlier
plan.”
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Theoretical Results



An illustrative example

Denote the current wealth level y, and consider gambling with thresholds a and b.

Zero drift: salient thinker gambles if and only if o(a,y) < o(b,y).
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An illustrative example

Denote the current wealth level y, and consider gambling with thresholds a and b.
Zero drift: salient thinker gambles if and only if o(a,y) < o(b,y).

4 Pr(z)
0.9

0.5

a=90 y=100 b= 140 x

A salient thinker plays a process with zero drift.
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Overview of the salience predictions on stopping behavior

Prediction 1

The share of “immediate sellers” monotonically decreases in the drift.

— Distinguishes ST from EUT (w/ concave utility), which predicts no gambling,
and from CPT, which yields never stopping irrespective of the drift.

Prediction 2

Conditional on not selling the asset, subjects choose a loss-exit strategy.

Prediction 3

Consistent skewness preferences across static and dynamic choices.
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Experimental Design



Implementation

n = 158 in 5 sessions in Cologne in Jan 2020.

10 ECU =1 Euro.

® T =10 sec and subjects could always pause the process.

® 6 processes with 0, -1, -3, -5, -10, -20 as drifts per sec.

Order of drifts randomized at the subject level.

Verbal explanation of the stochastic process.

Subsequent test for static skewness preferences (12 questions).

Pre-registered at AEA Registry: https://doi.org/10.1257/rct.5359-1.0.
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Before making a selling decision, subjects could sample from the underlying process

Instructions: The Drift of an Asset

On this page you see 10 examplary paths of an asset with a drift of 0.
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Before making a selling decision, subjects could sample from the underlying process

Instructions: The Drift of an Asset

On this page you see 10 examplary paths of an asset with a drift of -20.
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Main Experimental Results



Subjects stop earlier for processes with a more negative drift. In particular, the
share of subjects selling immediately monotonically decreases in the drift.
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e
Result 2

Conditional on not selling the asset immediately, a majority of subjects initially
chooses a loss-exit strategy. The median subject chooses 73% loss-exit strategies.
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Consistent static and dynamic skewness preferences (p = 0.39, p-value < 0.001).
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Additional Results



Adjustments of the initial strategies

® Only 1% of the subjects did never adjust the initial strategy.

® The median subject adjusts her strategy once per round, on average.

® Across all drifts, around 85% of all processes are stopped later than planned.

® Subjects mostly switch from a loss-exit to another loss-exit strategy:

To
Loss-Exit Gain-Exit
Loss-Exit 63.31% 10.31%
From
Gain-Exit 12.01% 14.37%

® We also find disposition-effect-like behavior consistent with ST.
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Discussion



Key take-aways

©® Endogenous skewness matters, but stopping behavior is sensitive to the drift.
® Further applications: job search, striving for an elusive goal, ...
© People reveal consistent skewness preferences in static and dynamic choices.

O ST is a promising candidate for unified theory of static and dynamic choice.
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In discrete, finite time CPT predicts stopping close to the expiration date

Let the process be given by a fair coin that is tossed repeatedly T times.
Whenever the coin comes up heads (tails) the value goes up (down) by 10 cents.
Consider Tversky and Kahneman's (1992) representative CPT agent:
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with o = 0.88, A = 2.25, and § = 0.65. When does this agent stop?
Consider the stopping time 7,5 with a = X; — 0.1 and b = X; + (T' —¢)0.1:
(X:+0.2,1/4)
(X;+0.1,1/2) <
< < X 14
(X —0.1,1/2) (X —0.1,1/2)

t=T—-1 t=T-2



In discrete, finite time CPT predicts stopping close to the expiration date — cont’d

Result: the representative CPT agent might stop eventually, but away from the
reference point already a few coin tosses suffice for her to gamble. Precisely:

1 coin toss remaining: stop if and only if Xp_1 € {r,r+0.1,..., 7+ (T —1)0.1}.

2 coin tosses remaining: stop if and only if X7 € {r,7 +0.1,7 + 0.2, + 0.3}.

3 coin tosses remaining: stop if and only if Xp_5 € {r,r + 0.1}.

4 coin tosses remaining: stop if and only if X7_4 = .




Verbal explanation of the stochastic process

“In this experiment you will see assets of varying profitability. How profitable an
asset is in the long run is described by the drift of the asset. The drift denotes
the average change in the value of the process per second.”

and

“A positive drift implies that the asset will increase in value in the long run,
while a negative drift implies that the asset will decrease in value in the long run.
Notice that the value of the asset varies. Hence, even an asset with a negative
drift sometimes increases in value.”

and

“Independent of the drift, the value of the asset can, in principle, become
arbitrarily large. The probability that the asset’s value indeed becomes very large
is the smaller the more negative the drift is. But even an asset with a very
negative drift can attain a very large value.”



Relation between skewness preferences revealed in static and dynamic environments

Lottery Exp. Value Skewness
( 37.5, 80%; 0, 20%) 30 -1.5
(41.25, 64%; 10, 36%) 30 -0.6
( 45,50%; 15, 50%) 30 0
( )
( )

60, 20%; 22.5, 80% 30 15
75, 10%; 25, 90% 30 2.7
(135, 2%; 27.85, 98%) 30 6.9

Table: Test for static skewness preferences (from Dertwinkel-Kalt and Késter, 2020).
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